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We now review 4- s briefly the application of 
this general theory of reac.tion rates to liquids 
and treat certain aspects more explicitly. The 
most probable mechanism of liquid flow is the 
rolling past each other to new equilibrium posi­
tions of pairs of molecules in adjoining layers; 
the frequent occurrence of this basic process 
shifts the layers of molecules and constitutes 
flow. This process is illustrated in Fig. 4 of 
Hirschfelder, Stevenson and Eyring. 7 The con­
figuration in which the molecules are halfway 
by each other, having broken part of their bonds 
and having also accumulated the necessary extra 
space, constitutes the activated complex. The 
activation energy required for the passing of the 
molecules is the energy of activation of viscous 
flow, t:.&is( =t:.Eo) . 

The distance measured along the velocity 
gradient between two neighboring pairs of mole­
cules sliding past each other is taken as Xl. The 
average distance between equilibrium positions 
in the direction of motion is taken as X while the 
distance between neighboring molecules in this 
same direction is X2, which mayor may not equal . 
X. X3 indicates the molecule-to-molecule distance 
normal to the direction of motion and to X2 and 
Xl. By definition we have for the viscosity 
t'J = j'Ad t:.v. Here j is the force per square centi­
meter tending to displace one layer with respect 
to the other, and t:.v is the difference in velocity 
of these two layers which are at a distance Xl 
apart. The force acting on a single molecule is 
j'A2X3, and it acts to lessen the work of passing 
over the barrier through a distance X/2, so that 
in the forward direction the height of the barrier 
is in effect lowered by the amountj'A2X3X/2, while 
in the backward direction it is raised by the same 
amount. The number of times that a molecule 
moves in the forward direc;tion in a second may be 
written as the corresponding specific reaction rate: 

kl = (pt / Pn)kT /h 
Xexp [ - (2t:.Eo- j'A2XaX)/2kT]. (4) 

For the backward direction: 

kb = (pt / Fn)kT /h 
Xexp [ - (2t:.Eo+X2X3X)/2kT]. (5) 

• H. Eyring, ]. Chern. Phys. 4, 283 (1936). 
6 R. H . Ewell and H. Eyring,]. Chern. Phys. 5, 726(1937). 
6 H. M. Smallwood, ] . App. Phys. 8, 50S (1937). 
7 Hirschfelder, StevenSQn and Eyring, ]. Chern. Phys. 

5, 896 (1937). 
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Hence: 

t:.v=X(kl-kb) (6) 
= X(pt / Pn)hT /h 

Xexp (-t:.Eo/ kT) {exp j'A2X3/ 2kT) 
-exp ( - j'A2XaX/2kT) J 

=X(pt/Pn)kT/h 
Xexp (-t:.Eo/kT)2 sinh (j'A2X3X/2kT) 

and 

11 = j'Ad t:.v = j'Al[X(Ft / Fn)kT /h 
Xexp (-t:.Eo/kT)2 sinh (j'A2X3X/2kT)]-1. (i) 

Now for ordinary viscous flow j'A2X3X«kT, so 
, that expanding the exponential and keeping the 
first power terms only we have aft~r cancellation: 

11 = Xl kT[X2X2X3(Ft / Pn)kT / h 
Xexp (-t:.Eo/kT)]- l (8 

= (Xlh/X2X2X3) (Pn/ pt) exp (t:.Eo/kT). 

It is interesting to check the assumption 
j'A2X3X«kT. While Bridgman 8 does not give the 
exact data necessary to compute j, we can de· 
termine its order of magnitude. The annular 
space between the falling weight and the cylinder 
wall in his experiment was of the order of 10-: 
cm. The weight fell at a velocity roughly of th( 
order of 1 cm/sec. Viscosity is defined by the 
equation: t'J = jd/ t:.v where d is the distance be· 
tween the layers across which the velocity gra· 
dient t:.v is measured . 

Since 

j=t'Jt:.v/d~ 1O-2/ 10-~= 1 dyne/cm.2 

X2X3X~ V/N 
j'A2XaX ~ 102/1023 = 10-21 

T~3000K 

k ~ 10-16 erg/deg./mole 
kT~ 10-14• 

So we are justified by a factor 10-7 in assumin 
jX2X3X«kT. We develop somewhat more fuil l 
than has been done previously the form of th( 
general expression 

for the particular case of a bimolecular process 
By bimolecular we mean that molecules one antl 

two in two contiguous layers move simultane· 

l P. M. Bridgman, The Physics of High PreSS1lT1 
(Macmillan Co., 1931). 
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